

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.19
118

Exploiting Dynamic Resource Allocation for Efficient Parallel Data

Processing in the Cloud
Dr. A. Kannagi1 , Syed Rasheed Uddin2, P. Amarnath3, Chinnaiah4

1Professor, 2, 3, 4 Assistant Professor
Department of Computer Science and Engineering,
Malla Reddy College of Engineering, Hyderabad.

ABSTRACT
In recent years ad-hoc parallel data

processing has emerged to be one of the killer
applications for Infrastructure-as-a-Service
(IaaS) clouds. Major Cloud computing
companies have started to integrate
frameworks for parallel data processing in
their product portfolio, making it easy for
customers to access these services and to
deploy their programs. However, the
processing frameworks which are currently
used have been designed for static,
homogeneous cluster setups and disregard
the particular nature of a cloud.
Consequently, the allocated compute
resources may be inadequate for big parts of
the submitted job and unnecessarily increase
processing time and cost. In this paper we
discuss the opportunities and challenges for
efficient parallel data processing in clouds
and present our research project. It is the
first data processing framework to explicitly
exploit the dynamic resource allocation
offered by today’s IaaS clouds for both, task
scheduling and execution. Particular tasks of
a processing job can be assigned to different
types of virtual machines which are
automatically instantiated and terminated
during the job execution.

Keywords: Task computing, query
processing, dynamic resource allocation,
Task Computing

I. INTRODUCTION
For organizations that exclusive need to

process vast sums Today a developing number of
organizations need to prepare gigantic measures

of information in a cost-effective way. Great
agents for these organizations are administrators
of Internet web indexes, similar to Google,
Yahoo, or Microsoft. The boundless measure of
information they need to manage each day has
made customary database arrangements
restrictively costly [5]. Rather, these
organizations have advanced a design
worldview in light of countless servers. Issues
like preparing slithered archives or recovering a
web file are part into a few autonomous
subtasks, appropriated among with lease a huge
IT infrastructure on a fleeting pay- per-use
premise. Administrators of alleged
Infrastructure-as-a-Service (IaaS) mists, similar
to Amazon EC2 [1], let their clients apportion,
get to, and control an arrangement of Virtual
Machines (VMs) which keep running inside
their server farms and just charge them for the
timeframe the machines are designated. The
VMs are regularly offered in various sorts, every
sort with its own qualities (number of CPU
centers, measure of primary memory, and so
forth.) and cost.

This paper is an extended It includes further

details on scheduling strategies and extended
experimental results. The paper is structured as
follows: Section II, starts with analyzing
 the above mentioned opportunities and
challenges and derives some important design
principles for our new framework. In Section
 III, we present Nephele’s basic
architecture and outline how jobs can be
described and executed in the cloud. Section IV,
provides some first figures on Nephele’s
performance and the impact of the optimizations

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.19
119

we propose. Finally, our work is concluded by
related work (Section V) and ideas for future
work

II. CHALLENGES AND OPPORTUNITIE

Current data processing frameworks like
Google's Map Reduce or Microsoft's Dryad
engine have been designed for cluster
environments. This is reflected in a number of
assumptions they make which are not
necessarily valid in cloud environments. In this
section we discuss how abandoning these
assumptions raises new opportunities but also
challenges for efficient parallel data processing
in clouds.

A. OPPORTUNITIES
Today's processing frameworks typically

assume the re-sources they manage consist of a
static set of homogeneous compute nodes.
Although designed to deal with individual nodes
failures, they consider the number of available
machines to be constant, especially when
scheduling the processing job's execution.
While IaaS clouds can certainly be used to create
such cluster-like setups, much of their flexibility
remains unused. One of an IaaS cloud's key
features is the provisioning of compute resources
on demand. New VMs can be allocated at any
time through a well-defined interface and
become available in a matter of seconds.
Machines which are no longer used can be
terminated instantly and the cloud customer will
be charged for them no more. Moreover, cloud
operators like Amazon let their customers rent
VMs of different types, i.e. with different
computational power, different sizes of main
memory, and storage. Hence, the compute
resources available in a cloud are highly
dynamic and possibly heterogeneous.

B. CHALLENGES
The cloud’s virtualized nature helps to enable

promising new use cases for efficient parallel
data processing. However, it also imposes new

challenges compared to classic cluster setups.
The major challenge we see is the cloud’s
opaqueness with prospect to exploiting data
locality: In a cluster the compute nodes are
typically interconnected through a physical high
performance network. The topology of the
network, i.e. the way the compute nodes are
physically wired to each other, is usually well
known and, what is more important, does not
change over time. Current data processing
frameworks offer to leverage this knowledge
about the network hierarchy and attempt to
schedule tasks on compute nodes so that data
sent from one node to the other has to traverse as
few network switches as possible [9]. That way
network bottlenecks can be avoided and the
overall throughput of the cluster can be
improved. In a cloud this topology information is
typically not exposed to the customer [29]. Since
the nodes involved in processing a data intensive
job often have to transfer tremendous amounts of
data through the network, this drawback is
particularly severe; parts of the network may
become congested while others are essentially
unutilized. Although there has been research on
inferring likely network topologies solely from
end- to-end measurements (e.g. [7]), it is unclear
if these techniques are applicable to IaaS clouds.
For security reasons clouds often incorporate
network virtualization techniques (e.g. [8])
which can hamper the inference process, in
particular when based on latency measurements.

III. DESIGN
Based on the challenges and opportunities

outlined in the previous section we have
designed Nephele, a new data processing
framework for cloud environments. Nephele
takes up many ideas of previous processing
frameworks but refines them to better match the
dynamic and opaque nature of a cloud.

A. ARCHITECTURE
Nephele's architecture follows a classic

master-worker pattern as illustrated in fig. 1.Fig

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.19
120

 Fig. 1: Structural Overview of Nephele Running
in an Infrastructure-as-a-Service (IaaS) Cloud

Before submitting a Nephele compute job, a
user must start a VM in the cloud which runs the
so called Job Manager (JM). The Job Manager
receives the client’s jobs, is responsible for
scheduling them, and coordinates their
execution. It is capable of communicating with
the interface the cloud operator provides to
control the instantiation of VMs. We call this
interface the Cloud Controller. By means of the
Cloud Controller the Job Manager can allocate
or de allocate VMs according to the current job
execution phase. We will comply with common
Cloud computing terminology and refer to these
VMs as instances for the remainder of this paper.
The term instance type will be used to
differentiate between VMs with different
hardware characteristics. E.g., the instance type
“m1.small” could denote VMs with one CPU
core, one GB of RAM, and a 128 GB disk while
the instance type “c1. X large” could refer to
machines with 8 CPU cores, 18 GB RAM ,and a
512 GB disk.

The actual execution of tasks which a Nephele

job consists of is carried out by a set of instances.
Each instance runs a so-called Task Manager
(TM). A Task Manager receives one or more
tasks from the JobMan- ager at a time, executes
them, and after that informs the Job Manager
about their completion or possible errors. Unless
a job is submitted to the Job Manager, we expect
the set of instances (and hence the set of Task

Managers) to be empty. Upon job reception the
Job Manager then decides, depending on the
job’s particular tasks, how many and what type
of instances the job should be executed on, and
when the respective instances must be
allocated/de allocated to ensure a continuous but
cost efficient processing. Our current strategies
for these decisions are highlighted at the end of
this section. The newly allocated instances boot
up with a previously compiled VM image. The
image is configured to automatically start a Task
Manager and register it with the Job Manager.
Once all the necessary Task

Managers have successfully contacted the Job
Manager, it triggers the execution of the
scheduled job.

After having specified the code for the
particular tasks of the job, the user must define
the DAG to connect these tasks. We call this
DAG the Job Graph. The Job Graph maps each
task to a vertex and determines the
communication paths between them. The
number of a vertex's incoming and outgoing
edges must thereby comply with the number of
input and output gates defined inside the tasks.
In addition to the task to execute, input and
output vertices (i.e. vertices with either no
incoming or outgoing edge) can be associated
with a URL pointing to external storage facilities
to read or write input or output data,
respectively. Fig. 2, illustrates the simplest
possible Job Graph. It only consists of one input,
one task, and one output vertex. Fig

1. Number of Subtasks
A developer can declare his task to be suitable

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.19
121

for parallelization. Users that include such tasks
in their Job Graph can specify how many parallel
subtasks Nephele should split the respective task
into at runtime. Subtasks execute the same task
code, however, they typically process different
fragments of the data.

2. Number of Subtasks Per Instance
By default each subtask is assigned to a

separate instance. In case several subtasks are
supposed to share the same instance, the user can
provide a corresponding an- notation with the
respective task.

3. Sharing Instances Between Tasks
Subtasks of different tasks are usually

assigned to different (sets of) instances unless
prevented by another scheduling restriction. If a
set of instances should be shared between
different tasks the

user can attach a corresponding annotation to
the Job Graph.

4. Channel Types
For each edge connecting two vertices the user

can determine a channel type. Before executing a
job, Nephele requires all edges of the original
Job Graph to be replaced by at least one channel
of a specific type. The channel type dictates how
records are transported from one subtask to
another at runtime. Currently, Nephele supports
network, file, and in- memory channels. The
choice of the channel type can have several
implications on the entire job schedule.

A more detailed discussion on this is
provided in the next subsection.

IV. EVALUATION

In this section we want to present first
performance results of Nephele and compare
them to the data processing framework Hadoop.
We have chosen Hadoop as our competitor,
because it is an open source software and
currently enjoys high popularity in the data
processing community. We are aware that
Hadoop has been designed to run on a very large
number of nodes (i.e. several thousand nodes).
However, according to our observations, the
software is typically used with significantly
fewer instances in current IaaS clouds. In fact,
Amazon itself limits the number of available
instances for their MapReduce service to 20
unless the respective customer passes an
extended registration process [2]. The challenge

for both frameworks consists of two abstract
tasks: Given a set of random integer numbers,
the first task is to determine the k smallest of
those numbers. The second task subsequently is
to calculate the average of these k smallest
numbers. The job is a classic representative for a
variety of data.

V. RELATED WORK
In recent years a variety of systems to facilitate
MTC has been developed. Although these
systems typically share common goals (e.g. to
hide issues of parallelism or fault tolerance),
they aim at different fields of application. Map
Reduce [9] (or the open source version Hadoop
[25]) is designed to run data analysis jobs on a
large amount of data, which is expected to be
stored across a large set of share- nothing
commodity servers. Map Reduce is highlighted
by its simplicity: Once a user has fit his program
into the required map and reduce pattern, the
execution framework takes care of splitting the
job into subtasks, distributing and executing
them. A single Map Reduce job always consists
of a distinct map and reduce program. However,
several systems have been introduced to
coordinate the execution of a sequence of Map
Reduce jobs [17,19]. Map Reduce has been
clearly designed for large static clusters.
Although it can deal with sporadic node failures,
the available compute resources are essentially
considered to be a fixed set of homogeneous
machines. The Pegasus framework by
Deelmanetal.

VI. RESULTS
show the performance results of our three
experiment, respectively. All three plots
illustrate the average instance utilization over
time, i.e. the average utilization of all CPU cores
in all instances allocated for the job at the given
point in time. The utilization of each instance has
been monitored with the Unix command "top"
and is broken down into the amount of time the
CPU cores spent running the respective data
processing framework (USR), the kernel and its
processes (SYS), and the time waiting for I/O to
complete (WAIT). In order to illustrate the
impact of network communication, the plots
additionally show the average amount of IP
traffic flowing between the instances over time.
We begin with discussing Experiment 1 (Map

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.19
122

Reduce and Hadoop): For the first Map Reduce
job, Tera Sort, fig. 7, shows a fair resource
utilization. During the map (point (a) to (c)) and
reduce phase (point (b) to (d)) the overall system
utilization ranges from 60 to 80%. This is
reasonable since we configured Hadoop's Map
Reduce engine to perform best for this kind of
task. For the following two Map Reduce jobs,
however, the allocated instances are oversized:
The second job, whose map and reduce phases
range from point (d) to (f) and point (e) to (g),
respectively, can only utilize about one third of
the available CPU capacity. The third job
(running between point (g) and (h)) can only
consume about 10 % of the overall resources

VII. CONCLUSION
In this paper we have discussed the challenges
and opportunities for efficient parallel data

processing in cloud environments and
presented Nephele, the first data processing
framework to exploit the dynamic resource
provisioning offered by today's IaaS clouds. We
have described Nephele's basic architecture and
presented a performance comparison to th
well- established data processing
framework Hadoop. The performance evaluation
gives a first impression on how the ability to
assign specific virtual machine types to specific
tasks of a processing job, as well as the
possibility to automatically allocate/de
allocate virtual machines in the course.

VIII. REFERENCES:
[1] Amazon Web Services LLC,"Amazon
Elastic Compute Cloud", (Amazon EC2).
[Online] Available: http://www.
aws.amazon.com/ec2/,2009.
[2] Amazon Web Services LLC,"Amazon
Elastic Map Reduce", [Online] Available:
http://www.aws.amazon.com/ elastic
mapreduce/,2009.
[3] Amazon Web Services LLC,"Amazon
Simple Storage Service", [Online]Available:
http: //www.aws.amazon.com/
s3/, 2009.
[4] D. Battr´ S. Ewen, F. Hueske, O. Kao,
V.Markl, D. Warneke. e,"Nephele/PACTs: A
Programming Model and Execution Frame-
work for Web-Scale Analytical Processing", In
SoCC '10: Proceed- ings of the ACM Efficient
Parallel Processing of Massive Data Sets", Proc.
VLDB Endow., 1(2):1265- 1276,2008.
[5]H.chihYang,A.Dasdan,R.-L.Hsiao, D. S.
Parker. "Map Reduce-Merge: Simplified
Relational Data Processing on Large Clusters",
In SIGMOD '07: Proceedings of the 2007 ACM
SIGMOD international conference on
Management of data, pp. 1029-1040, New York,
NY, USA, 2007. ACM.

